OPTICS

PHYS 311

Dr Reem M. Al-Tuwirqi

WAVE EQUATION

Optics 311-Wave Motion

Introduction

Before we can understand how light moves from one medium to another and how it interacts with lenses and mirrors, we must be able to describe its motion mathematically

1. The most general form of a traveling wave.
2. The differential equation it satisfies.

One Dimensional Waves

$$
\psi(\vec{r}, t) \rightarrow \psi(x, t)=\psi\left(x^{\prime}\right) \longleftarrow x^{\prime}=x-v t
$$

The variation of ψ with respect to position is given by:

The variation of ψ with respect to time is given by:

$$
\begin{aligned}
\frac{\partial \psi(x, t)}{\partial t} & =\frac{\partial x^{\prime}}{\partial t} \frac{d \psi\left(x^{\prime}\right)}{d x^{\prime}} \\
& = \pm v \frac{d \psi\left(x^{\prime}\right)}{d x^{\prime}}
\end{aligned}
$$

Taking the second derivative of these yields:

One Dimensional Waves

Taking the second derivative of these yields:

$$
\begin{aligned}
\frac{\partial^{2} \psi(x, t)}{\partial x^{2}} & =\frac{\partial}{\partial x}\left(\frac{\partial \psi(x, t)}{\partial x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{\partial \psi\left(x^{\prime}\right)}{\partial x^{\prime}}\right) \\
& =\left(\frac{\partial x^{\prime}}{\partial x} \frac{\partial}{\partial x^{\prime}}\right) \frac{d \psi\left(x^{\prime}\right)}{d x^{\prime}} \\
& =\frac{d^{2} \psi\left(x^{\prime}\right)}{d x^{\prime 2}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial^{2} \psi(x, t)}{\partial t^{2}} & =\frac{\partial}{\partial t}\left(\frac{\partial \psi(x, t)}{\partial t}\right) \\
& =\frac{\partial}{\partial t}\left(\pm v \frac{d \psi\left(x^{\prime}\right)}{d x^{\prime}}\right) \\
& =\left(\pm v \frac{\partial}{\partial x^{\prime}}\right)\left(\pm v \frac{d \psi\left(x^{\prime}\right)}{d x^{\prime}}\right) \\
& =v^{2} \frac{d^{2} \psi\left(x^{\prime}\right)}{d x^{\prime 2}}
\end{aligned}
$$

$$
\frac{\partial^{2} \psi(x, t)}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} \psi(x, t)}{\partial t^{2}}<\begin{aligned}
& \text { THE WAVE } \\
& \text { EQUATION }
\end{aligned}
$$

Optics 311-Wave Motion

Three Dimensional Waves

$$
\begin{gathered}
\text { Extending to three dimensions } \\
\underbrace{\partial / \partial x} \vec{\nabla}=\frac{\partial}{\partial x} \hat{i}+\frac{\partial}{\partial y} \hat{j}+\frac{\partial}{\partial z} \hat{k} \quad \begin{array}{c}
\text { Directional derivative } \\
\text { 三gradient }
\end{array} \\
\nabla^{2}=\vec{\nabla} \cdot \vec{\nabla}=\left(\frac{\partial}{\partial x} \hat{i}+\frac{\partial}{\partial y} \hat{j}+\frac{\partial}{\partial z} \hat{k}\right) \cdot\left(\frac{\partial}{\partial x} \hat{i}+\frac{\partial}{\partial y} \hat{j}+\frac{\partial}{\partial z} \hat{k}\right)=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \\
\text { CARTESIAN COORDINATES }
\end{gathered}
$$

Harmonic Waves

Of special importance are simple harmonic waves that involve the sine or cosine functions

$$
\psi(\overrightarrow{\mathrm{x}}, \mathrm{t})=\mathrm{A} \sin \left[\overrightarrow{\mathrm{k}} \cdot(\overrightarrow{\mathrm{x}} \pm \overrightarrow{\mathrm{v}} \mathrm{t})+\phi_{\mathrm{o}}\right]
$$

Periodic waves

Fourier Series

 A linear combination \equiv Periodic wave
Harmonic Waves

What is the physical interpretation of HW equation?

$$
\psi(\vec{x}, t)=A \sin [\vec{k} \cdot(\vec{x} \pm \vec{v} t)+\varepsilon]
$$

Harmonic Waves

$$
\psi(\overrightarrow{\mathrm{x}}, \mathrm{t})=\mathrm{A} \sin \left[\overrightarrow{\mathrm{k}} \cdot(\overrightarrow{\mathrm{x}} \pm \overrightarrow{\mathrm{v}} \mathrm{t})+\phi_{0}\right] \quad \varphi=\overrightarrow{\mathrm{k}} \cdot(\overrightarrow{\mathrm{x}} \pm \overrightarrow{\mathrm{v}} \mathrm{t})+\phi_{0}
$$

Phase

When x and t change together in such a way that φ is constant, the displacement $\psi=\boldsymbol{A} \sin \varphi$ is also a constant.

Describes the motion of a fixed point on the wave form

$$
d \varphi=0=\vec{k} \cdot(d \vec{x} \pm \vec{v} d t) \Longrightarrow \frac{d \vec{x}}{d t}= \pm \vec{v} \Longleftrightarrow \begin{aligned}
& \text { Wave velocity } \\
& \text { Phase velocity }
\end{aligned}
$$

$$
\text { when } x=0 \text { \& } t=0
$$

$$
\psi_{\mathrm{o}}=\mathrm{A} \sin \phi_{0}
$$

Complex Representation of Waves

It is convenient to represent wavefunctions as

 complex functions$$
\psi(\overrightarrow{\mathrm{x}}, \mathrm{t})=\mathrm{A} \sin \left[\overrightarrow{\mathrm{k}} \cdot(\overrightarrow{\mathrm{x}} \pm \overrightarrow{\mathrm{v}} \mathrm{t})+\phi_{0}\right]
$$

mathematically simpler to use

$$
\psi(x, t)=A e^{i\left(\vec{k} \cdot \bar{x}-\omega t+\phi_{0}\right)}
$$

The magnitude of z, symbolized by r, is called absolute value or modulus

Complex Representation of Waves

Complex conjugate

$$
z^{*}=x-i y \text { or } z^{*}=r e^{-i \theta}
$$

$$
\begin{aligned}
& \text { Euler's } \\
& \text { formula }
\end{aligned} \quad z=r e^{i \theta} \quad \theta=\tan ^{-1} \frac{y}{x}
$$

$$
z=r(\cos \theta+i \sin \theta)
$$

$$
\psi(x, t)=A e^{i(\vec{k} \cdot \vec{x}-\omega t+\varepsilon)}\left\{\begin{array}{l}
\operatorname{Re}(\psi)=A \cos (\overrightarrow{\vec{k}} \cdot \vec{x}-\omega t+\varepsilon) \\
\operatorname{Im}(\psi)=A \sin (\vec{k} \cdot \vec{x}-\omega t+\varepsilon)
\end{array}\right.
$$

Plane Waves

Spherical Waves

Spherical Waves

In this coordinate system, the Laplacian operator becomes

$$
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}
$$

the amplitude of a spherical wave decreases as it moves away from its source

Cylindrical Waves

ELECTROMAGNETIC WAVES

ENERGY IN AN EM WAVE

As with any wave, the EM wave transports energy
Energy density stored in an E field

$$
u_{E}=\frac{1}{2} \varepsilon_{0} E^{2}
$$

$$
\begin{gathered}
E=c B \\
c=1 / \sqrt{\mu_{0} \varepsilon_{0}}
\end{gathered}
$$

$$
u_{E}=\frac{1}{2} \varepsilon_{0} E^{2}=\frac{1}{2} \varepsilon_{0} c^{2} B^{2}=\frac{1}{2} \frac{\varepsilon_{0}}{\mu_{0} \varepsilon_{0}} B^{2}=\frac{1}{2 \mu_{0}} B^{2}=u_{B}
$$

The total energy density is shared between the constituent electric and magnetic fields

$$
u=u_{E}+u_{B}
$$

ENERGY IN AN EM WAVE

What is the EM energy flow associated with a traveling wave?

S: transport of energy per unit time across a unit area (W/m²)

During a very small interval Δt, only the energy contained in the cylindrical volume, $u(c \Delta t A)$, will cross A

$$
S=\frac{u c \Delta t A}{\Delta t A}=u c=\frac{1}{\mu_{o}} E B
$$

For isotropic media, the energy flows in the direction of the propagation of the wave:

$$
\mathbf{S}=\frac{1}{\mu_{o}} \mathbf{E} \times \mathbf{B}=c^{2} \varepsilon_{o} \mathbf{E} \times \mathbf{B}
$$

IRRADIANCE

Irradiance: AVERAGE energy per unit area per unit time

$$
\mathrm{I} \equiv\langle | \mathbf{S}\left\rangle_{\mathrm{T}}=\mathrm{c}^{2} \varepsilon_{\mathrm{o}}\right| \mathbf{E}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{0}} \mid\left\langle\sin ^{2}(\mathbf{k} \cdot \mathbf{r} \pm \omega \mathrm{t})\right\rangle
$$

$$
I \equiv\langle S\rangle_{T}=\frac{c \varepsilon_{o}}{2} E_{o}^{2} \longrightarrow I=c \varepsilon_{o}\left\langle E^{2}\right\rangle_{T}=\frac{c}{\mu_{o}}\left\langle B^{2}\right\rangle_{T}
$$

\mathbf{E} is considerably more effective at exerting forces and doing work on charges than B
\mathbf{E} is called the OPTICAL FIELD

LIGHT POLARIZATION

The direction of E is known as the polarization of the wave.

$$
\begin{aligned}
& \overrightarrow{\mathrm{E}}=\mathrm{E}_{\mathrm{o}} \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{x}} \\
& \overrightarrow{\mathrm{~B}}=\mathrm{B}_{\mathrm{o}} \sin (\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{y}} \\
& \overrightarrow{\mathrm{~S}}=\varepsilon_{0} \mathrm{cE}_{0}^{2} \sin ^{2}(\mathrm{kz}-\omega \mathrm{t}) \hat{\mathrm{z}}
\end{aligned}
$$

\mathbf{E} is called the OPTICAL FIELD

The polaraization of an EM wave determines the direction of the force that the EM wave exerts on a charged particle in the path of the wave.
\leftarrow Lorentz force law

$$
\overrightarrow{\mathrm{F}}=\mathrm{Q}(\overrightarrow{\mathrm{E}}+\overrightarrow{\mathrm{V}} \times \overrightarrow{\mathrm{B}})
$$

LIGHT POLARIZATION

Linear polarization

(a)

circular polarization

(b)
© 2007 Pearson Prentice Hall, Inc.

Random polarized, partial polarized light \leftarrow How to convert them to polarized light???

DOPPLER EFFECT

v is the relative velocity between the source and observer
$v+\leftarrow$ approaching each other
$v-\leftarrow$ separating from each other

