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Introduction

Before we can understand how light moves
from one medium to another and how it
interacts with lenses and mirrors, we must
be able to describe its motion
mathematically

1. The most general form of a
traveling wave.

2. The differential equation it
satisfies.
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The pulse

maintains its
shape
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One dimensional
wave pulse of
arbitrary
shape fixed to
a coordinate
system O’(x’,y’)

The O’ system &
the pulse
move to the
right along
the x-axis at a
uniform speed
v relative to a
fixed
coordinate
system O(x,y)




y'=f(x)

/1/

Any point P on the pulse can be
described by either of the

X two coordinates x or X’
X'=X—-ut

y

Y y=y'=1(x)=f(x—ut)

/ \\yzm ‘ Left movement—> +v ‘

~ y = f (Xxut)

0" X X l

w(F,t)_ =w(F)

‘ Shape or Profile ‘

v =w(XY,z1)=f(rxot)

‘ The general form of a traveling wave ‘
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One Dimensional Waves
w(r,t) > w(xt) =w(x') <mmx=x—0ut

The variation of y with The variation of y with
respect to position is respect to time is
given by: given by:
dy (x.t) _ & dy(x) dy (x.t) _ & dy(x)
X & dx A a dx
_dy(x) _ 4, dv(x)
dx’ dx’

Taking the second derivative of these yields:
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One Dimensional Waves

Taking the second derivative of these yields:

Py (x.t) 2 /&//(x,t)j ’y(xt)_ 2 /é}y(x,t)j
X2 XK\ X A? al a
_ 2 (aw(x) _o(,, dv(x)
XK\ & j a\ dx’ j
(G gl
_ d z//.(z)(') _ )2 d;wl(zx')

Py(xt) 1 Jw(xt) | \ THE WAVE,
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Three Dimensional Waves

Extending to three dimensions

-V _ é 2‘ n é B n é /2 Directional derivative
@C @;J A = gradient

| THE WAVE EQUATION I

2. (v V2 is called the
VZW(F t): 1 o W(I’,t) Laplacian
’ D> A2 operator
2 2 2
VZ=V.V= éf+£i+ék (25,2 j+£k = é‘2+5}2+§2
X & X X & X K A
|  CARTESIAN COORDINATES |
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Harmonic Waves

Of special importance are simple harmonic waves that

Involve the sine or cosine functions
w(X,t)=Asin[k- (X +5t)+d, ]
/—/%
K

A o,
Amplitude Propagation Initial phase
number Epoch angle
I Periodic waves I
Foul:ler H A linear combination = Periodic wave |
Series
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Harmonic Waves

What is the physical interpretation of HW equation?
w(X,t)= Asin[k - (X £0t)+ €]

v A v

N NLr
T

L=VA
t = constant X = constant
A T
K= }/ = 2 I Period
| wavelength | A =4V erio
K — I Wave Angular — }/
) number frequency V
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Harmonic Waves

w(X,t)=Asin[k-(X+6t)+d,] =Kk (X£0t)+d,

When x and t change together in such a way that ¢ is
constant, the displacement y = A sin ¢ is also a constant.

I Describes the motion of a fixed point on the wave form I

dp=0= K . (d)_( + 5dt) g _ Wave velocity

dt Phase velocity
B

Initial | | whenx=o&t=0 | W, =ASINQ,
phase
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Complex Representation of Waves

It is convenient to represent wavefunctions as
complex functions

w(X,t)=Asin[k-(X £ 5t)+d, ]
\If( Xt ) _ Aei(R-)?—(otﬂl)o)

mathematically
simpler to use

Z=X+1y
‘ Complex \ '
number polar form
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The magnitude of z,
symbolized by r, is
called absolute value
or modulus
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Complex Representation of Waves

T X =rcos @
r=|z| , Z=x+lj/ y=I’SIn6’
o 29 . .0
. P =x"+y

z =r(cos@+isinb)

Complex conjugate | Euler's P . i0 O=tan" Y
z=re »

formula

z¥=x—iy or z¥=re "’

i(K-R—at+e) Re(y) = Acos(lz.z_a)t N g)
w(x 1) = Ae Im(w) = Asin(K - X — ot + o)
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Plane Waves

These planes are called the
wavefronts of the disturbance

2 égw 0’2(// Jy 1y
W= 2 2 .2 2
O é\/ Y& TV a

A wave which satisfies the above

wave equation is called a
PLANE WAVE

= Aei(lZ-r—a)t)
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Spherical Waves
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Spherical Waves

| In this coordinate system, the Laplacian operator becomes |

2
V? = 1§(r £)+ - ﬁ(sineijjt L 2

r*a\ &’ r°siné oo 20)  r’sin® @ A’
4 r=yx’+y?+z> O=tan™ sz;yz ¢=tan‘1¥
er l//( F) - W(r’ 0 ¢) = l//( r)
\_ A i(k-F-—w
b p \|]( I ) — T e (k t)
y | spherical wavefunction |

the amplitude of a spherical wave decreases as it moves away from its source |




Cylindrical Waves

In this coordinate system,
the Laplacian operator becomes

y ¢ o10(,0),12 2

= — +
’ ra\ a’ r° o a’

| The requirement of cylindrical
Yy / symmetry means that

B y(F) = w(r.0.2) = y(r)

i(kptot)

w(r,t)z%e

| cylindrical wavefunction
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ELECTROMAGNETIC WAVLES

E=E_sin(kF—ot)
B=B, sin(kF—ot)

E=cB
1
C =
dl o v Moo
el b t
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ENERGY IN AN EM WAVE

‘ As with any wave, the EM wave transports energy ‘

Energy density stored Energy density stored
in an E field in a B field
1 5 E=cB |
U, =—&k u,=——32~
o C= 1/ VHo & ° 24,
T e L L I R
2 2 2 Ho&o 2 14

The total energy density is shared between the constituent
electric and magnetic fields

_ _ 2 1 2
U=u, uBﬁu_goE _ﬂ_oB
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ENERGY IN AN EM WAVE

I What is the EM energy flow associated with a traveling wave? I

I S: transport of energy per unit time across a unit area (W/m?2) I

During a very small interval At, only
the energy contained in the cylindrical
volume, u(c AtA), will cross A

UCALA 1
S = =uc=—=~%EB
AtA Ho
For isotropic media, the energy flows in
the direction of the propagation of the
wave:
_ 1 _ 2
S= ,U_ ExB=c’¢,ExB h‘ Poynting vector
o
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IRRADIANCE

Irradiance: AVERAGE energy per unit area per unit time

|=(|8]). =c%,|E, xB,|(sin’(k.r £ot))

| E<S>T = C;O Eoqu =C80<E2>T =£<BZ>T

Ky

E is considerably more effective at exerting
forces and doing work on charges than B

E is called the
OPTICAL FIELD
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LIGHT POLARIZATION

I The direction of E is known as the polarization of the wave. I

E =E, sin(kz—t) X
_ _ _ E is called the
B=B,sin(kz—wt)Yy OPTICAL FIELD

S=¢,CE2sin’(kz—ot)Z

The polaraization of an EM wave determines the direction of the force
that the EM wave exerts on a charged particle in the path of the wave.
< Lorentz force law

1 |

F=Q(E+VxB)
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LIGHT POLARIZATION

Linear polarization | | circular polarization

= y -0 y . Y y T V T It
t=10 t 3 t 3% t=0 k IAI,) "f., .
A -
E iy AT
E=0 F B
= » T > -
X |E, v I E X X X X
— |
_ 37 y bl AY T y _ 3= y _m y _ 5w y
=% =w =a E= 30 . g =g
E=0 El '
|E X X Y X
£z E I I
= % 1= % @ S Ju)/ 27
A E 2
~ G & ; F
ol Al E ¢ -
E El E=0 o
X X X R X
B = F sintkz — w08 + E. costkz — o)} = E. sinlkz — on3 + E. sin(kz — @ e
E = E,sin(kz - o) + E, sin(kz — wn)p E = E;sin(kz — o0)x + £, cos(kz — o)y = E;sin(kz — o)x + L sin(kz — wf +
(b)
(a)
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Random polarized, partial polarized light
< How to convert them to polarized light???
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DOPPLER EFFECT

¥ e

A \1+U
C

v is the relative velocity between the source and observer

v + € approaching each other
v - € separating from each other
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